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Pharmaceuticals, food, and other materials man-
ufactured on roll-to-roll equipment can possess
spatially nonuniform concentrations that manu-
facturers need to monitor to insure quality and to
improve manufacturing processes. Manufacture
of transdermal products, such as patches that
deliver nicotine, glyceryl nitrate, or estradiol trans-
dermally, typically occurs on such equipment.

As early as 1975, scientists recognized the need
to monitor the compositional distribution across
a web-type line that manufactures pharmaceu-
ticals [1], but the technology to monitor the
entire area for compositional differences was
not available. In manufacturing transdermal
patches, pull samples are not ideal because the
practice creates areas cut out of the web. The
manufacturer must handle these areas as
exceptions further downstream when the manu-
facturing process laminates the release liner,
adhesive backing, packaging, and other layers
onto the substrate and cuts the final product to
the unit-dose size.

Near-infrared (NIR) spectroscopy is a widely
used tool now for identifying materials and for
monitoring composition of products, coating
thickness, blend uniformity, and other pharma-
ceutically relevant parameters [2]. This technol-
ogy is fast and nondestructive and can provide
quantitative analyses of pharmaceuticals, both
in development and on the production line [3,
4]. Hardware advances in spectrographs, com-
puting power, and photodetectors now allow
companies to combine spectroscopy with
imaging technology, creating so-called
Hyperspectral Imaging Systems (HSI).

The FDA’s initiative for Process Analytical
Technology (PAT) is driving the develop-
ment of manufacturing processes that

move pharmaceutical quality to a new level [5].
As its basic premise, the PAT initiative suggests
that understanding and monitoring critical steps
in the manufacturing process can provide a
reduction in costly and disruptive failure rates.
The manufacturer must conduct in-process eval-
uations that allow needed corrections to be made
before a manufacturing run is completed. PAT
emphasizes designing quality into the product
rather than relying on product testing on the
back end as a means of identifying off-specifica-
tion products.

Hyperspectral imaging duringmanufacture is a new
analytical technique for continuously monitoring
manufactured products in pharmaceutical and other
industries. Formeasurement of composition,manu-
facturers most commonly use the near-infrared
wavelength range. By combining spectroscopic tech-
nology with an imaging camera, manufacturers can
monitor the entire surface of pharmaceutical prod-
ucts continuously during roll-to-roll manufacturing.
The end result is a full spectrum containing chemical
information at each spatial point. From this nonde-
structivemethod, themanufacturer can obtain infor-
mation on several important aspects of the product,
including variations in concentration, nonhomoge-
neous distribution of components, and spatial loca-
tions of contaminants.
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Manufacturers have used HSI in the pharmaceu-
tical industry:
• To identify counterfeit drugs [6, 7]
• To detect dissolution differences between

tablets at the microscopic level [8]
• To monitor process development [9] and

stages of pharmaceutical production [10]

Manufacturers cannot define the distribution of the
active pharmaceutical ingredients (APIs) and the
excipientswith a single bulk concentration. They also
must verify an additional dimension, the spatial dis-
tribution of theAPI and excipients [11, 12]. Variation
may exist in several aspects of the extruded or
deposited,medicated layer of a transdermal product.

In the axial-pull direction, the variation can be due:
• To the composition of the layer, which may

vary over time due to settling in the applica-
tor module

• To the thickness of the layer, which can be
inconsistent due to variations in the tempera-
ture or viscosity of the deposited mix of
materials

In the cross-web direction, the variation can be due:
• To nonuniformity of the mechanism for layer

deposition
• To local temperature variations at the point

of the deposition
• To edge effects toward the sides of the web

Methodology that uses NIR spectroscopy is useful
for analyzing materials for transdermal [13] and
thin-film drug delivery. Fountain et al foundNIR to
be an effective and nondestructive method of deter-
mining the content uniformity of testosterone in
thin-film composites [14].

Hyperspectral Imaging
The term hyperspectral imaging or chemical imag-
ing refers to the technique where each point in the
surface of a sample has a respective spectrum from
which a scientist can calculate the chemical compo-
sition. The spectra can be UV, visible, near-infrared,
ormid-infrared, depending onwhich region ismost
useful for the application. As Figure 1 shows

schematically, each point in the down-web and
across-web directions has a complete spectrum asso-
ciatedwith it.

The compilation of this information, called the
hypercube, can be a massive amount of data,
depending on the spatial and spectral resolution.
In off-line applications for laboratories, the sys-
tem collects the data for the hypercube all at once
and saves it for further processing. In a continu-
ously moving sample, the data processing must
keep pace in real time with this high rate of data
collection and compress the information for
recording. The system also can report data con-
tinuously for use in real time by process-control
computer systems.

The hyperspectral camera consists of a lens, a spec-
trograph, and a focal plane array (FPA) sensor. The
lens captures the image of a line from the sample to
the entrance slit of the spectrograph, which in turn
creates images of each point on this line, breaking it

Figure 1
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Figure 1. Shows hyperspectral data collection: The system collects a full
spectrum for each point on a line across the transdermal web.As the
webmoves past the camera, the system forms the complete hypercube.
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Figure 2. Ahyperspectral camera includes a lens, a spectrograph,
and a focal plane array sensor.
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down into its spectral components and projecting it
onto the FPA(Figure 2). Using specialized lenses, the
same camera system can perform noncontact moni-
toring of the features on a 30-inchweb, orwith a dif-
ferent lens, it can detect particles as small as 30µm.

Issues in Hyperspectral Measurement for
Transdermal Applications
Acomplete measurement system consists of an illu-
mination module, a hyperspectral camera with its
controller module, power supplies, and a data col-
lection and processing system. Figures 3 (a) and (b)
show the two basic optical arrangements.

In contrast, other products may limit measure-
ment to either transmission or reflectance only.
For transdermal products in general, the trans-
mission-measurement mode is preferable because
the light usually passes through the entire cross-
section of the product. It is generally a good prac-
tice to choose a measurement point physically
closest to the location where the manufacturing
process deposits the API-containing-material and
where the process has not yet applied the addi-
tional layers.

In the example for the estradiol patch, the manufac-
turer can observe good-quality spectra evenwith the
peel-off layer in place. The peel-off layer, however,
is thin with smooth and parallel sides that produce
residual fringing when the system transmits light
through the whole stack, introducing yet another
variable into themeasurement (Figure 5).

Figure 3
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Figure 3: (a) Shows the optical arrangement for reflectance-mode
imaging: The system directs light at the surface of the material, and
the camera above measures the reflectance. (b) Shows the optical
arrangement for transmission-mode imaging: The system directs
light at a diffuse reflector, which redirects the light through the
material. The material absorbs light at characteristic wavelengths,
and the camera measures the remaining light intensity.

3a 3b

Figure 4

Figure 4. Shows the near-infrared spectra under transmission-mea-
surement (red) and reflectance-measurement (blue) modes of a
0.075mg-per-day estradiol patch.

Figure 5

Figure 5. Shows the near-infrared spectrum of a 0.075mg-per-day
estradiol patch with the peel-off layer in place. Note the interfer-
ence fringing around 2000nm magnified above.

When choosing placement and arrangement for
measurement, the manufacturer must consider the
spectral characteristics of the transdermal product.
For example, the spectrum of a 0.075mg-per-day
estradiol patch shows approximately 0.4 to 0.5 peak-
to-valley absorbance in both transmission and
reflectance, which is a reasonable intensity for quan-
titative work in either mode (Figure 4).
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Calibration
NIR spectra are relatively featureless and the spec-
tra of the different components in the sample usu-
ally overlap. To predict composition, the manufac-
turer usually must use multivariate calibration
rather than univariate calibration at a single wave-
length. Also, multivariate measurement maximizes
sensitivity, which usually is desired because the time
available for onemeasurement is often limited, espe-
cially in on-line situations.

The calibration is a mathematical model that the
manufacturer establishes during the preparatory
phase of the process installation and that relates the
measured spectra to physical characteristics of the
sample, such as concentration.Manufacturers create
calibrations for a specific set of substrate, API, cam-
era, white reference material, and illumination. See
Miller [15] for amore detailed general description of
the steps of calibration development.

Scientists base multivariate spectral calibrations on
classical least-squares methods or on statistical
approaches like partial least squares (PLS) or princi-
pal component regression (PCR). They typically use
the latter in more challenging applications as are
often found in conventional NIR or in imaging [16,
17], which Gendrin reviewed [18].

The statistical approach to calibrating measurement
instruments requires calibration standards with
knownandvarying concentrations in the analyte and
excipients. In practice, this approach requires pro-
duction of several different, off-specification products
that the scientist uses for the calibration. Creating
these standards costs time and money and is often
challenging due to practical limitations associated
with varying the process. The statistical approach
also makes testing and validating a challenge
because the inner working of the black box calibra-
tion algorithms is not transparent to the user or regu-
lator.

The Science BasedMethod of Calibration (SBC)
For process monitoring of pharmaceuticals where
ingredients are well-known, manufacturers usually
can use an alternativemethod, the so-called science-
based method of calibration (SBC). This technique

[19 to 21] makes use of an understanding that led to
themathematical definition of selectivity in themul-
tivariate case [22]: All calibration methods, includ-
ing not only PLS and PCR but also the traditional
classical methods, produce a result that can be writ-
ten in the samemathematical form (Equation 1).

In this equation:
• The parameter bc is the regression-vector

result.
• The parameter gc is the estimate of the

response spectrum of the analyte.
• The parameter �c is the estimate of the

covariance matrix of the spectral noise.

Assume a transdermal application where the ana-
lyte of interest is the mass-area density of the API
(g/cm2) and themeasured spectra are in absorbance
units [AU].

In this example:
• The response spectrum gc has units of AU/

(g/cm2).
• The inverse covariance matrix ��c has units

AU-2).
• The regression vector bc has units

(g/cm2)/AU.

In the older classical calibrationmethods, which are
based on spectral fitting, the user defines the signal
gc, but the algorithm implicitly defines the noise esti-
mate�c , which therefore is not under the direct con-
trol of the user. In statistical calibrations like PLS, the
algorithm implicitly defines both the signal and the
noise estimates.

SBC is simple to explain because it puts both estimates
under the user’s control; that is, the user must define
bothparts explicitly and thenput themintoEquation1.

As an example, assume that a scientist is measuring
spectra from a running process, and somehow, he or
she can fix the concentration of the analyte at some
value, say, 0.75 g/cm2. The variation of themeasured

bc=
gc

T=�c
-gc

�c
-gc
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spectra is then the spectral noise; that is, �c is the
sum of variances from all spectral effects other than
the analyte, including changes in excipient concen-
trations, sampling noise, and hardware noise. In
practice, scientists can determine the covariance
matrix �c from a large number of measured spectra
regardless of whether the analyte is fixed or not,
although some precautions may be necessary in the
latter case [22]. Since these spectra do not require lab
reference values, determination of �c is relatively
easy. The computation itself is analogous to comput-
ing a standard deviation in the univariate case.

Next, assume that all spectral-noise effects, even the
hardware noise, are somehow frozen in time. The
only variation in the measured spectra then comes
from changes in the analyte concentration. This con-
dition defines the application-specific, analyte
response spectrum gc, which depends not only on
the chemistry but also on the physical characteristics
of the sample, such as its optical scattering, and on
the chosen geometry of the sampling optics. In prac-
tice, a few measurements in the lab can determine
the response spectrum, simulating the conditions of
the actual on-line application.

When the scientist matches the signal and noise esti-
mates used in the calibration, gc and�c , to the reality
of the measurement situation, gc ~= g true and �c ~=
�true, then the result of Equation 1 is the spectrometric
version of the well-known matched filter, which has
widespread use in time-signal processing equipment
such as radar or mobile phones. The matched-filter
solution is the globally best solution in the mean-
square error sense; that is, it can achieve selectivity at
the best possible sensitivity, thus achievingminimum
standard error. Typically, a user’s spectroscopic exper-
tise and application knowledge can produce esti-
mates that are superior; that is, better matched, than
the estimates that algorithms implicitly make. Com-
pared to classical calibrations,matched-filter solutions
have inmost cases a significant advantage in sensitiv-
ity. Compared to PLS and other statistical methods,
thematched-filter solution has an advantage in selec-
tivity and often also in sensitivity.
Prediction of the Analyte Concentration
As in other calibration methods, prediction of the
analyte concentration in hyperspectral-measured

spectrum x is by dot-multiplicationwith the b-vector
(Equation 2).

Where yOP and x OP describe the operating point of
themeasurement.

Usually, a scientist chooses these points as the
mean values but sometimes also chooses other
operating points, such as yOP = 0 and x OP = x Clean
for an impurity measurement. The b-vector is the
end-result of the calibration effort, and the high-
speed computing equipment uses it to predict the
composition. During a manufacturing run, the
sensors are not always looking at the type of
material for which they were calibrated because:
• The process may not apply some layers at the

beginning or end of a run.
• Sample areas could be cut out of the film.
• The camera may be looking at a wider swath

than the product web.

Manufacturers must implement outlier-detection
methods to ensure that the camera detects spectra
that lie outside the valid calibration range and that
the control system reacts according to predeter-
mined rules. Simple application-specific algorithms
can detect various forms of rough outliers.

TheMahalanobis’ distance,which is a sensitivemul-
tivariate measure of distance, can detect subtle
changes in the spectral features that otherwisewould
be difficult to detect. Themanufacturer computes this
distance based on the��c estimate that the usermade
in SBC or that the algorithm defined in PLS or PCR.
Themanufacturer thus can detect sample points out-
side the expected range and block the prediction for
that point. This practice is usually a standard part of
the prediction-software routine.

Compared to PLS, matched-filter calibration (SBC)
can significantly reduce the cost and the time
required for multivariate calibration, often by as
much as 80%, and at the same time, improve the
selectivity and sensitivity of the multivariate mea-
surement [22]. Thus, it is prudent to try the SBC
approach first.

y^ =(x-xOP)
T • bc + yOP
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For complex caseswhere the analyte of interest is not
an identifiable and separately measurable chemical
entity, such as in the case of chemical interactions or of
phase transitions of ingredients, SBC is not the
method of choice. In such cases, manufacturers can
use statistical correlative methods like PLS, which in
challenging casesmay require hundreds of calibration
sampleswith known reference values. In all cases, the
manufacturermust use independent validation sam-
ples to test the performance of the calibration.

Example of Hyperspectral Monitoring
in a Patch
Since transdermal products are different proprietary
formulations using a variety of opaque or transpar-
ent substrates, the manufacturer must analyze each
application separately. To illustrate a hyperspectral
analysis, Figure 6 shows a scan of an over-the-
counter patch. The authors recorded the spectra in
reflectance in the 1000 to 2500nm range and
processed the data using the above mentioned SBC
algorithm [23].

For the prediction, the authors used the spectrum of
liquid nicotine as the pure analyte, and applied no
additional slope or bias correction. In this example,
thickness changes in the layer as well as the concen-
tration distribution of theAPI in the matrix affected
the relative abundance of the API. A hyperspectral

imaging system can perform the same or similar
measurements and predict the distribution of ingre-
dients on-line at the rate of the process to evaluate
uniformity of the product duringmanufacturing.

From Laboratory to On-Line
Process Monitoring
Hyperspectral push-broom, line-imaging cameras
are ideally suited for continuouslymoving industrial
samples, producing high-resolution spectra of every
point of a line at very high speed [24]. Fully parallel
spectral measurements allow the scanning of mov-
ing samples to monitor the entire surface. The man-
ufacturer can arrange the illumination and the sam-
ple in diffuse reflectance or diffuse transmittance as
described above.An important advantage of hyper-
spectral imaging is that the manufacturer can test
and calibrate the camera in the laboratory and then
transfer it to the production line tomonitor theman-
ufacturing process.

A typical hyperspectral monitoring system for a
transdermal or other roll-to-roll manufacturing
process consists of the following equipment
(Figure 7):
• A hyperspectral camera, such as a short

wave infrared (SWIR) camera, typically
capable of producing 320 spatial points
with 256 spectral points each, at a rate of up
to 100 frames per second
The spectral points span wavelengths from
1000 to 2500nm. For example, the density of
measurement points for a 40-centimeters-
wide web moving at a rate of 60 centimeters
per minute can be 800 points per square cen-
timeter; that is, eight points per centimeter
across the web and 100 points per centimeter
down the web. Manufacturers typically use
averaging of spectral data to increase the sig-
nal to noise at the expense of reducing the
spatial resolution.

• A high-speed device to process the spectral
data, such as the Hyperspectral Prediction
Engine™ (Middleton Research, Middleton,
Wisconsin USA)
The process requires a very fast, dedicated
computing device to process the hyperspec-

Figure 6

Figure 6. Shows predicted nicotine levels in a 21mg over-the-
counter patch. Colors toward the red indicate higher amounts of
nicotine; those toward the blue indicate lower relative amounts.
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analysis and understanding ofmethods necessary to
optimize this technique.

Conclusion
Monitoring of continuous pharmaceutical produc-
tion is a new challenge in the light of the PAT initia-
tive. Manufacturers can monitor transdermal and
other roll-to-roll production using high-speed,
hyperspectral instrumentation if the analytical task
lends itself to spectroscopic monitoring using
reflectance or transmission, near-infrared measure-
ments. Pull samples inmanufacturing are disruptive
and costly, andmanufacturers can replace themwith
processmonitoring that constitutes 100% inspection
using a hyperspectral camera system. Themanufac-
turer can perform feasibility measurements in the
lab and then can move the hyperspectral device to
the production floor and integrate it into the process-
monitoring and process-control system.
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